Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[(4,7-diphenyl-1,10-phenanthroline)lead(II)]-μ-benzene-1,4-dicarboxylato]

Yan-Bing Yin* and Hai-Xia Yu

Department of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, Heilongjiang Province, People's Republic of China Correspondence e-mail: yinyanbinghar@yahoo.com.cn

Received 19 October 2007; accepted 19 October 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; *R* factor = 0.026; *wR* factor = 0.082; data-to-parameter ratio = 16.6.

In the title compound, $[Pb(C_8H_4O_4)(C_{24}H_{16}N_2)]_n$, the benzene-1,4-dicarboxylate (1,4-BDC) dianions link the Pb^{II} atoms to form a chain structure. The Pb^{II} atom is coordinated by 4,7-diphenyl-1,10-phenanthroline (*L*) and is also bonded to four 1,4-BDC O atoms, resulting in a very distorted *cis*-PbN₂O₄ octahedron. There are two 1,4-BDC half-anions in the asymmetric unit, both completed by inversion. Aromatic π - π stacking between *L* ligands in adjacent chains results in a twodimensional supramolecular layer structure [minimum centroid–centroid separation 3.464 (5) Å].

Related literature

For studies on related lead(II) carboxylates, see: Fan & Zhu (2007); Yang *et al.* (2007).

Experimental

Crystal data

 $\begin{array}{ll} \left[\text{Pb}(\text{C}_8\text{H}_4\text{O}_4)(\text{C}_{24}\text{H}_{16}\text{N}_2) \right] & \gamma = 92.04 \ (3)^\circ \\ M_r = 703.69 & V = 1290.2 \ (4) \ \text{\AA}^3 \\ \text{Triclinic, } P\overline{1} & Z = 2 \\ a = 9.855 \ (2) \ \text{\AA} & \text{Mo } K\alpha \text{ radiation} \\ b = 10.046 \ (2) \ \text{\AA} & \mu = 6.58 \ \text{mm}^{-1} \\ c = 13.539 \ (3) \ \text{\AA} & T = 293 \ (2) \ \text{K} \\ \alpha = 100.36 \ (3)^\circ & 0.27 \times 0.17 \times 0.08 \ \text{mm} \\ B = 101.14 \ (3)^\circ \end{array}$

Data collection

Rigaku R-AXIS RAPID
diffractometer12741 measured reflections
5855 independent reflections
5326 reflections with $I > 2\sigma(I)$
 $R_{int} = 0.026$ Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
 $T_{min} = 0.275, T_{max} = 0.592$ $R_{int} = 0.026$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.026$	352 parameters
$vR(F^2) = 0.082$	H-atom parameters constrained
S = 1.12	$\Delta \rho_{\rm max} = 0.80 \text{ e } \text{\AA}^{-3}$
5855 reflections	$\Delta \rho_{\rm min} = -0.98 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Pb1-N1	2.686 (4)	Pb1-O2	2.418 (3)
Pb1-N2	2.677 (4)	Pb1-O3	2.506 (4)
Pb1-O1	2.503 (4)	Pb1-O4	2.663 (4)
O2-Pb1-O1	52.76 (11)	N2-Pb1-N1	60.74 (12)
O3-Pb1-O4	50.42 (12)		()

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *PROCESS-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus* (Sheldrick, 1990); software used to prepare material for publication: *SHELXL97*.

The authors thank Qiqihar University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2600).

References

Fan, S. R. & Zhu, L.-G. (2007). Inorg. Chem. 46, 6785-6793.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instrument Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Yang, J. Ma. J.-F., Liu, Y.-Y., Ma, J.-C. & Batten, S. R. (2007). Inorg. Chem. 46, 6542–6555.

Acta Cryst. (2007). E63, m2803 [doi:10.1107/S1600536807051859]

catena-Poly[[(4,7-diphenyl-1,10-phenanthroline)lead(II)]-*µ*-benzene-1,4-dicarboxylato]

Y.-B. Yin and H.-X. Yu

Comment

The design and synthesis of coordination polymers is one of the most active areas of materials research. In this regard, many of the efforts have so far been devoted to the study of transition-metal based coordination polymers. However, relatively little attention has been paid to the coordination polymers of main group metal ions despite their interesting network topologies and properties (Fan & Zhu, 2007; Yang *et al.*, 2007). Herein, we present a new Pb(II) coordination polymer, namely the title compound, (I), [Pb(1,4-BDC)(*L*)], where 1,4-BDC = the benzene-1,4-dicarboxylate dianion and L = 4,7-diphenyl-1,10-phenanthroline.

Selected bond lengths and angles are listed in Table 1. In compound (I) the Pb^{II} atom is six-coordinated by four carboxylate O atoms from two different 1,4-BDC ligands, and two N atoms from one *L* ligand (Fig. 1). This results in a very distorted *cis*-PbN₂O₄ octahedron (Table 1). The centrosymmetric 1,4-BDC dianions bridge neighboring Pb(II) atoms to form a chain structure and the *L* ligands are attached on both sides of the chains (Fig. 2). In addition, the neighboring chains interact through π - π forces between *L* ligands, leading to a two-dimensional supramolecular layer structure [minimum centroid-centroid separation = 3.464 (5) Å].

Experimental

A mixture of $Pb(NO_3)_2$ (2 mmol), 1,4-H₂BDC (2 mmol) and *L* (2 mmol) were dissolved in 14 ml distilled water, followed by addition of triethylamine until the pH of the system was adjusted to about 5.8. The resulting solution was sealed in a 23-ml Teflon-lined stainless steel autoclave and heated at 455 K for 6 days under autogenous pressure. Afterwards, the reaction system was slowly cooled to room temperature. Colourless blocks of (I) were collected.

Refinement

All the H atoms were generated geometrically (C—H = 0.93 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The asymmetric unit of (I) expanded to show the complete 1,4-BDC molecules, with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level. H atoms omitted for clarity. Symmetry codes: (i) 2 - x, 1 - y, 1 - z; (ii) 1 - x, 1 - y, 2 - z.

Fig. 2. View of the chain structure of (I). The hydrogen atoms are omitted for clarity.

Fig. 3. View of the supramolecular layer structure of (I). The hydrogen atoms are omitted for clarity.

catena-Poly[[(4,7-diphenyl-1,10-phenanthroline)lead(II)]-µ-benzene- 1,4-dicarboxylato]

Crystal data	
[Pb(C ₈ H ₄ O ₄)(C ₂₄ H ₁₆ N ₂)]	Z = 2
$M_r = 703.69$	$F_{000} = 680$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.811 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 9.855 (2) Å	Cell parameters from 11906 reflections
b = 10.046 (2) Å	$\theta = 3.0-27.5^{\circ}$
c = 13.539 (3) Å	$\mu = 6.58 \text{ mm}^{-1}$
$\alpha = 100.36 \ (3)^{\circ}$	T = 293 (2) K
$\beta = 101.14 \ (3)^{\circ}$	Block, colorless
$\gamma = 92.04 \ (3)^{\circ}$	$0.27\times0.17\times0.08~mm$
$V = 1290.2 (4) \text{ Å}^3$	

Data collection

Rigaku R-AXIS RAPID diffractometer	5855 independent reflections
Radiation source: rotating anode	5326 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.026$
Detector resolution: 10.0 pixels mm ⁻¹	$\theta_{max} = 27.5^{\circ}$
T = 293(2) K	$\theta_{\min} = 3.0^{\circ}$
ω scans	$h = -12 \rightarrow 12$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$k = -13 \rightarrow 11$
$T_{\min} = 0.275, T_{\max} = 0.592$	$l = -17 \rightarrow 17$
12741 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.026$	H-atom parameters constrained

$wR(F^2) = 0.082$	$w = 1/[\sigma^2(F_o^2) + (0.0487P)^2 + 0.7324P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.12	$(\Delta/\sigma)_{\text{max}} = 0.001$
5855 reflections	$\Delta \rho_{max} = 0.80 \text{ e } \text{\AA}^{-3}$
352 parameters	$\Delta \rho_{min} = -0.98 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

F 1		1.	1 .	• ,				. 1.	1 .	,	182	ζ.
Fractional	atomic	coordinates	and i	sotron	IC OF P	auivalent	' isotron	1C d1S	nlacement	narameters	IA^{-}	1
1 / 00011011011	aronne	coordinates	control t	sonop		9000000000000	isonop	ie ans	pracement	parameters	1.1	/

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.7524 (5)	0.5869 (5)	0.5700 (4)	0.0294 (9)
C2	0.8815 (4)	0.5438 (4)	0.5338 (3)	0.0277 (9)
C3	1.0097 (5)	0.5650 (5)	0.6012 (4)	0.0338 (10)
Н3	1.0164	0.6088	0.6688	0.041*
C4	0.8726 (5)	0.4795 (5)	0.4329 (4)	0.0342 (10)
H4	0.7872	0.4660	0.3877	0.041*
C5	0.5244 (5)	0.6112 (5)	0.8194 (4)	0.0354 (10)
C6	0.5120 (5)	0.5544 (5)	0.9137 (3)	0.0306 (9)
C7	0.4760 (5)	0.6338 (5)	0.9975 (4)	0.0329 (10)
H7	0.4604	0.7243	0.9963	0.039*
C8	0.5374 (5)	0.4184 (5)	0.9160 (4)	0.0339 (10)
H8	0.5630	0.3638	0.8605	0.041*
C9	0.5850 (6)	0.7681 (5)	0.3916 (4)	0.0356 (11)
Н9	0.5302	0.6869	0.3697	0.043*
C10	0.6482 (6)	0.8187 (5)	0.3207 (4)	0.0380 (11)
H10	0.6388	0.7685	0.2546	0.046*
C11	0.7240 (5)	0.9417 (5)	0.3473 (4)	0.0354 (10)
C12	0.7367 (5)	1.0139 (5)	0.4512 (3)	0.0323 (10)
C13	0.6757 (5)	0.9515 (4)	0.5188 (3)	0.0272 (9)
C14	0.6947 (5)	1.0147 (4)	0.6262 (3)	0.0278 (9)
C15	0.7765 (5)	1.1398 (4)	0.6614 (3)	0.0267 (9)
C16	0.8285 (5)	1.2039 (5)	0.5886 (4)	0.0348 (10)
H16	0.8764	1.2888	0.6105	0.042*
C17	0.8095 (5)	1.1436 (5)	0.4884 (3)	0.0331 (10)
H17	0.8448	1.1879	0.4431	0.040*

C18	0.7880 (5)	0.9937 (5)	0.2696 (4)	0.0344 (10)
C19	0.9241 (6)	1.0477 (5)	0.2893 (4)	0.0373 (11)
H19	0.9778	1.0560	0.3549	0.045*
C20	0.9818 (6)	1.0897 (5)	0.2135 (4)	0.0419 (12)
H20	1.0733	1.1255	0.2280	0.050*
C21	0.9020 (7)	1.0776 (6)	0.1162 (5)	0.0539 (15)
H21	0.9395	1.1064	0.0649	0.065*
C22	0.7686 (7)	1.0238 (7)	0.0951 (4)	0.0540 (15)
H22	0.7161	1.0150	0.0290	0.065*
C23	0.7091 (6)	0.9817 (6)	0.1707 (4)	0.0445 (13)
H23	0.6175	0.9459	0.1553	0.053*
C24	0.8039 (5)	1.1944 (4)	0.7674 (3)	0.0289 (9)
C25	0.6614 (6)	1.0051 (5)	0.7875 (4)	0.0369 (11)
H25	0.6223	0.9610	0.8312	0.044*
C26	0.8990 (5)	1.3178 (5)	0.8113 (3)	0.0330 (10)
C27	1.0344 (7)	1.3022 (6)	0.8569 (5)	0.0517 (14)
H27	1.0640	1.2161	0.8609	0.062*
C28	1.1262 (7)	1.4166 (8)	0.8970 (6)	0.068 (2)
H28	1.2180	1.4064	0.9255	0.082*
C29	1.0815 (7)	1.5449 (6)	0.8945 (4)	0.0484 (14)
H29	1.1429	1.6208	0.9222	0.058*
C30	0.9472 (7)	1.5603 (6)	0.8513 (5)	0.0516 (15)
H30	0.9167	1.6468	0.8504	0.062*
C31	0.8564 (6)	1.4469 (5)	0.8087 (4)	0.0409 (11)
H31	0.7656	1.4579	0.7780	0.049*
C32	0.7425 (6)	1.1269 (5)	0.8302 (3)	0.0346 (10)
H32	0.7550	1.1622	0.8999	0.042*
N1	0.5995 (4)	0.8299 (4)	0.4880 (3)	0.0324 (8)
N2	0.6370 (4)	0.9488 (4)	0.6886 (3)	0.0303 (8)
01	0.6379 (3)	0.5309 (4)	0.5201 (3)	0.0397 (8)
O2	0.7607 (3)	0.6793 (3)	0.6469 (2)	0.0337 (7)
O3	0.5268 (4)	0.5278 (4)	0.7384 (3)	0.0436 (9)
O4	0.5308 (5)	0.7365 (4)	0.8253 (3)	0.0573 (12)
Pb1	0.513080 (16)	0.698420 (16)	0.623266 (12)	0.02661 (7)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.022 (2)	0.030 (2)	0.037 (2)	-0.0013 (17)	0.0068 (17)	0.007 (2)
C2	0.021 (2)	0.026 (2)	0.037 (2)	-0.0003 (17)	0.0054 (17)	0.0096 (19)
C3	0.026 (2)	0.039 (3)	0.034 (2)	-0.0047 (19)	0.0044 (18)	0.004 (2)
C4	0.022 (2)	0.041 (3)	0.038 (2)	-0.0032 (19)	0.0017 (18)	0.009 (2)
C5	0.035 (3)	0.040 (3)	0.033 (2)	-0.006 (2)	0.0092 (19)	0.010 (2)
C6	0.034 (2)	0.031 (2)	0.026 (2)	-0.0036 (19)	0.0058 (18)	0.0033 (19)
C7	0.041 (3)	0.024 (2)	0.033 (2)	0.0002 (19)	0.009 (2)	0.0032 (19)
C8	0.040 (3)	0.027 (2)	0.034 (2)	0.001 (2)	0.009 (2)	-0.0004 (19)
C9	0.046 (3)	0.025 (2)	0.030 (2)	-0.005 (2)	0.004 (2)	-0.0043 (19)
C10	0.052 (3)	0.034 (3)	0.025 (2)	0.000 (2)	0.008 (2)	-0.002 (2)

G1 0 2		1.051 (0)	017 1		0.0200	, ,
<i>Geometric parameters (Å, °)</i>						
P01	0.02255 (9)	0.02//1 (10)	0.03195 (10)	0.00146 (6)	0.00919(6)	0.00811(/)
04 Dh1	0.100(4)	0.0288 (19)	0.045(2)	-0.008(2)	0.019(2)	0.0070(17)
03	0.063(3)	0.0363(19)	0.0321(17)	0.00/0(18)	0.0110(17)	0.0062 (16)
02	0.0278(17)	0.0351 (18)	0.0357(17)	0.0032 (14)	0.0082 (13)	-0.0018(15)
	0.0213(16)	0.044 (2)	0.049 (2)	-0.0040(14)	0.0113(14)	-0.0056(17)
N2	0.035 (2)	0.0245 (18)	0.0317 (19)	-0.0026 (16)	0.0066 (16)	0.0074(16)
NI N2	0.040 (2)	0.029 (2)	0.0270 (18)	-0.0053 (17)	0.0057 (16)	0.0033 (16)
C32	0.048 (3)	0.032 (2)	0.023 (2)	-0.001(2)	0.0112 (19)	-0.0010 (19)
	0.040 (3)	0.034 (3)	0.046 (3)	-0.002(2)	0.003(2)	0.008 (2)
C30	0.066 (4)	0.030(3)	0.056 (3)	-0.010(3)	0.005 (3)	0.009 (3)
C29	0.058 (4)	0.037(3)	0.042 (3)	-0.013(3)	0.007 (3)	-0.006(2)
C28	0.044 (4)	0.069 (5)	0.076 (5)	-0.011(3)	-0.017(3)	0.008 (4)
C2/	0.045 (3)	0.037(3)	0.063 (4)	0.008 (2)	0.001(3)	-0.007(3)
C26	0.035 (3)	0.032(2)	0.028 (2)	-0.0051(19)	0.0024 (18)	0.003/(19)
C25	0.044(3)	0.037(3)	0.030(2)	-0.005(2)	0.012(2)	0.004(2)
C24	0.035(2)	0.022(2)	0.029(2)	0.005/(18)	0.0009 (18)	-0.0001(17)
C23	0.042(3)	0.057(5)	0.034(3)	-0.001(3)	0.004(2)	0.013(3)
C22	0.062(4)	0.072(4)	0.032(3)	0.004(3)	0.010(3)	0.019(3)
C21	0.007(4)	0.055 (4)	0.031(3)	-0.001(3)	0.025(3)	0.025(3)
C20	0.044(3)	0.030(3)	0.04/(3)	0.004(2)	0.021(2)	-0.001(2)
C19 C20	0.043(3)	0.037(3)	0.030 (2)	0.005 (2)	0.009 (2)	0.001(2)
C18	0.042 (3)	0.033 (2)	0.029 (2)	0.003 (2)	0.006 (2)	0.010(2)
	0.047 (3)	0.026 (2)	0.027 (2)	-0.002(2)	0.0149 (19)	0.0019 (18)
C16	0.045 (3)	0.025 (2)	0.035 (2)	-0.007 (2)	0.009 (2)	0.0064 (19)
CI5	0.031 (2)	0.024 (2)	0.0244 (19)	0.0007 (17)	0.0064 (17)	0.0023 (17)
C14	0.031 (2)	0.024 (2)	0.027 (2)	0.0005 (17)	0.0020 (17)	0.0042 (17)
C13	0.031 (2)	0.023 (2)	0.025 (2)	-0.0009 (17)	0.0011 (17)	0.0046 (17)
C12	0.041(3)	0.026 (2)	0.028 (2)	-0.0030 (19)	0.0024 (19)	0.0066 (19)
	0.040(3)	0.033(2)	0.031(2)	-0.004(2)	-0.0015 (19)	0.012(2)
C11	0.040(2)	0.022(2)	0.021(2)	0.004(2)	0.0015(10)	0.012(2)

C1 - 02	1.251 (6)	C1/-H1/	0.9300
C1—01	1.253 (6)	C18—C19	1.387 (7)
C1—C2	1.500 (6)	C18—C23	1.394 (7)
C2—C4	1.387 (7)	C19—C20	1.385 (7)
C2—C3	1.393 (6)	C19—H19	0.9300
C3—C4 ⁱ	1.388 (7)	C20—C21	1.380 (8)
С3—Н3	0.9300	C20—H20	0.9300
C4—C3 ⁱ	1.388 (7)	C21—C22	1.361 (9)
C4—H4	0.9300	C21—H21	0.9300
C5—O4	1.245 (6)	C22—C23	1.393 (8)
С5—О3	1.259 (6)	C22—H22	0.9300
С5—С6	1.512 (6)	С23—Н23	0.9300
С6—С7	1.379 (6)	C24—C32	1.387 (7)
C6—C8	1.402 (7)	C24—C26	1.486 (7)
C7—C8 ⁱⁱ	1.392 (7)	C25—N2	1.329 (6)
С7—Н7	0.9300	C25—C32	1.403 (7)

C8—C7 ⁱⁱ	1.392 (7)	С25—Н25	0.9300
C8—H8	0.9300	C26—C31	1.382 (7)
C9—N1	1.320 (6)	C26—C27	1.385 (8)
C9—C10	1.397 (7)	C27—C28	1.394 (9)
С9—Н9	0.9300	С27—Н27	0.9300
C10-C11	1.372 (7)	C28—C29	1.381 (9)
C10—H10	0.9300	C28—H28	0.9300
C11—C12	1.442 (7)	C29—C30	1.366 (9)
C11—C18	1.486 (7)	С29—Н29	0.9300
C12—C13	1.409 (6)	C30—C31	1.387 (8)
C12—C17	1.423 (7)	С30—Н30	0.9300
C13—N1	1.364 (6)	С31—Н31	0.9300
C13—C14	1.452 (6)	С32—Н32	0.9300
C14—N2	1.353 (6)	Pb1—N1	2.686 (4)
C14—C15	1.422 (6)	Pb1—N2	2.677 (4)
C15—C24	1.410 (6)	Pb1—O1	2.503 (4)
C15—C16	1.431 (6)	Pb1—O2	2.418 (3)
C16—C17	1.357 (6)	Pb1—O3	2.506 (4)
C16—H16	0.9300	Pb1—O4	2.663 (4)
O2—C1—O1	121.7 (4)	С19—С20—Н20	120.4
O2—C1—C2	119.9 (4)	C22—C21—C20	120.1 (5)
O1—C1—C2	118.4 (4)	C22—C21—H21	119.9
O2—C1—Pb1	59.1 (2)	C20—C21—H21	119.9
O1—C1—Pb1	63.0 (2)	C21—C22—C23	121.2 (5)
C2—C1—Pb1	171.9 (3)	C21—C22—H22	119.4
C4—C2—C3	119.7 (4)	C23—C22—H22	119.4
C4—C2—C1	119.7 (4)	C22—C23—C18	119.5 (5)
C3—C2—C1	120.6 (4)	С22—С23—Н23	120.3
C4 ⁱ —C3—C2	119.8 (5)	C18—C23—H23	120.3
C4 ⁱ —C3—H3	120.1	C32—C24—C15	118.0 (4)
С2—С3—Н3	120.1	C32—C24—C26	120.8 (4)
C2—C4—C3 ⁱ	120.5 (4)	C15—C24—C26	121.2 (4)
C2—C4—H4	119.7	N2-C25-C32	124.1 (4)
C3 ⁱ —C4—H4	119.7	N2—C25—H25	118.0
O4—C5—O3	123.5 (5)	С32—С25—Н25	118.0
O4—C5—C6	119.0 (5)	C31—C26—C27	119.3 (5)
O3—C5—C6	117.5 (4)	C31—C26—C24	122.1 (5)
C7—C6—C8	119.3 (4)	C27—C26—C24	118.6 (5)
C7—C6—C5	121.2 (4)	C26—C27—C28	119.6 (6)
C8—C6—C5	119.5 (4)	С26—С27—Н27	120.2
C6—C7—C8 ⁱⁱ	121.5 (4)	С28—С27—Н27	120.2
С6—С7—Н7	119.3	C29—C28—C27	120.4 (6)
C8 ⁱⁱ —C7—H7	119.3	C29—C28—H28	119.8
C7 ⁱⁱ —C8—C6	119.3 (4)	С27—С28—Н28	119.8
C7 ⁱⁱ —C8—H8	120.4	C30—C29—C28	120.0 (5)
С6—С8—Н8	120.4	С30—С29—Н29	120.0
N1—C9—C10	123.1 (5)	С28—С29—Н29	120.0

N1—C9—H9	118.4	C29—C30—C31	119.9 (5)	
С10—С9—Н9	118.4	С29—С30—Н30	120.1	
C11—C10—C9	120.8 (4)	С31—С30—Н30	120.1	
C11—C10—H10	119.6	C26—C31—C30	120.8 (5)	
С9—С10—Н10	119.6	C26—C31—H31	119.6	
C10-C11-C12	117.1 (4)	C30-C31-H31	119.6	
C10-C11-C18	119.5 (4)	C24—C32—C25	119.4 (4)	
C12-C11-C18	123.5 (4)	С24—С32—Н32	120.3	
C13—C12—C17	118.9 (4)	С25—С32—Н32	120.3	
C13—C12—C11	118.1 (4)	C9—N1—C13	118.3 (4)	
C17—C12—C11	123.0 (4)	C9—N1—Pb1	119.5 (3)	
N1—C13—C12	122.5 (4)	C13—N1—Pb1	121.6 (3)	
N1—C13—C14	117.2 (4)	C25—N2—C14	117.1 (4)	
C12-C13-C14	120.4 (4)	C25—N2—Pb1	120.4 (3)	
N2-C14-C15	123.3 (4)	C14—N2—Pb1	121.8 (3)	
N2-C14-C13	118.1 (4)	C1—O1—Pb1	90.5 (3)	
C15—C14—C13	118.6 (4)	C1—O2—Pb1	94.5 (3)	
C24—C15—C14	118.0 (4)	C5—O3—Pb1	96.3 (3)	
C24—C15—C16	123.0 (4)	C5—O4—Pb1	89.3 (3)	
C14—C15—C16	119.0 (4)	O2—Pb1—O1	52.76 (11)	
C17—C16—C15	121.5 (4)	O2—Pb1—O3	83.20 (13)	
С17—С16—Н16	119.3	O1—Pb1—O3	83.93 (12)	
С15—С16—Н16	119.3	O2—Pb1—O4	90.28 (14)	
C16—C17—C12	121.4 (4)	O1—Pb1—O4	126.20 (13)	
С16—С17—Н17	119.3	O3—Pb1—O4	50.42 (12)	
C12—C17—H17	119.3	O2—Pb1—N2	72.33 (12)	
C19—C18—C23	118.4 (5)	O1—Pb1—N2	116.45 (12)	
C19—C18—C11	123.2 (4)	O3—Pb1—N2	121.73 (12)	
C23—C18—C11	118.3 (5)	O4—Pb1—N2	77.13 (12)	
C20—C19—C18	121.5 (5)	O2—Pb1—N1	73.90 (12)	
С20—С19—Н19	119.2	O1—Pb1—N1	74.30 (13)	
С18—С19—Н19	119.2	O3—Pb1—N1	154.98 (14)	
C21—C20—C19	119.3 (5)	O4—Pb1—N1	137.65 (12)	
C21—C20—H20	120.4	N2—Pb1—N1	60.74 (12)	
Symmetry codes: (i) $-x+2$, $-y+1$, $-z+1$; (ii) $-x+1$, $-y+1$, $-z+2$.				

Fig. 2

Fig. 3

